Интересные и нужные сведения о строительных материалах и технологиях


ОСНОВНЫЕ ЭНЕРГЕТИЧЕСКИЕ ПАРАМЕТРЫ УСТАНОВОК, ИСПОЛЬЗУЮЩИХ ВОЗОБНОВЛЯЕМЫЕ ВИДЫ ЭНЕРГИИ

Основными энергетическими параметрами установок на основе ВИЭ, имеющими наиболее существенное значение для потребителя, являются: установленная мощность станции (установки) 7VycT и объем произведенной энергии за год Эг. При обосновании и проектировании энергетических установок, использующих ВИЭ кроме отмеченных, необходимы показатели, определяющие режимы работы энергоустановки, характеристики прихода энергии, характеристики рельефа и подстилающей поверхности местности, параметры воздействия на окружающую среду.

Определение основных энергетических параметров гидроэлектростанций.

Для работы гидроэлектростанции необходим расход воды Q и перепад уровней, т.е. напор Н. Полностью использовать мощность водотока на ГЭС невозможно, она будет меньше за счет гидравлических потерь энергии в подводящих и отводящих сооружениях, потерь в самих турбинах, а также потерь энергии при трансформации механической энергии вращения вала в электрическую энергии в генераторе.

В главе 2 были рассмотрены три основные схемы использования водной энергии: плотинная, деривационная и плотинно деривационная. Создаваемый в этих схемах напор, равный разности отметок уровней верхнего VBE и нижнего УНБ бьефов называется геометрическим или статическим напором Нст.



Энергия, получаемая рабочим колесом от водного потока, будет равна разности удельных энергий на входе в рабочее колеса С-С и на выходе из него К-К. Эта величина представляет собой рабочий напор турбины Н, Он меньше напора брутто на величину гидравлических потерь в водопроводящем тракте с, вызванных действием в потоке сил сопротивления. Данная величина выражает усредненную потерю удельной механической энергии между сечениями В-В и С-С и состоит из гидравлических потерь на трение (по длине водопроводящего тракта) и местных потерь. Следовательно, рабочий напор будет равен Н =H6-hc. р


Скорость воды перед водоприемником и в выходном сечении нижнего бьефа невелики и разностью кинетических энергий в этих сечениях для практических расчетов можно пренебречь. Тогда, для практических расчетов рабочий или полезный напор турбины выражают формулой:





Расход ГЭС, или зарегулированный расход, определяется видом регулирования стока реки с помощью водохранилища. Длительное регулирование (годичное, многолетнее) производится с целью выравнивания неравномерности речного стока в разрезе года или ряда лет. Краткосрочное (недельное или суточное) регулирование осуществляется для перерегулирования равномерного недельного или суточного расхода воды в реке в соответствии с неравномерностью потребления энергии в течение недели или суток различными потребителями.

Определение основных энергетических параметров ветроэнергетических установок.

Для ветроэнергетических установок важнейшими параметрами являются: мощность ВЭУ, диаметр ротора ветроколеса, коэффициент использования мощности, тип и параметры генератора и рабочая характеристика ВЭУ.

Важным показателем является коэффициент использования мощности кис„. Строго говоря, коэффициент использования (кисп) должен учитывать также простой ВЭУ по техническим причинам — профилактика, ремонты, которые несколько снижают величину кис„. Однако, если техническое обслуживание ВЭУ проводится в периоды штилей и энергетических затиший, когда скорость ветра и<оо, то снижение величины кисп по техническим причинам можно ожидать незначительным, поэтому в настоящее время пользуются кисп.

Для выполнения расчета обеспеченности мощности ветроагрегатов необходимы рабочая характеристика ВЭУ и распределение скорости ветра на высоте оси ротора.

Энергию ветрового потока можно подсчитать, если воспользоваться выражением для кинетической энергии тела массой т, движущегося со скоростью v. Подставив массу воздушного потока, заключенную в объеме W9 получим:


Для подсчета мощности и выработки энергии ветроагрегатом используются данные наблюдений за скоростями ветра, имеющиеся в местных центрах гидрометеорологических наблюдений. Эти данные могут быть пересчитаны и представлены в виде кривой обеспеченности. Пример представлен на рис. 3.9.

Используя формулу, приведенную выше, подсчитывают мощности ветрового потока и строят график обеспеченности его мощности. Площадь графика представляет собой годовую энергию ветра.

При определении основных энергетических параметров определенного ВЭУ кроме ветровых данных о ветропотенциале необходима рабочая характеристика этого ветроагрегата. Общий вид характеристик представлен на рис. 3.10. Из них видно, что различные типы ВЭУ имеют разные мощности, а кроме того, ветроагрегаты отличаются начальной, номинальной и максимальной скоростями ветра.


По кривой обеспеченности ветра для данной местности и рабочей характеристике конкретного ВЭУ, рассчитывают график обеспеченности мощности этого ветроагрегата (рис. 3.11).


На выработку электроэнергии ветроагрегатами, а следовательно, и на их экономическую эффективность, существенное влияние оказывают:

- ветровые характеристики местности;

- применяемый тип ВЭУ и его конструктивное исполнение;

- рабочая характеристика ветроагрегата;

- используемое электрическое оборудование ВЭУ.

Определение параметров солнечных энергоустановок Фотоэлектрические преобразователи солнечной энергии представляют из себя фотоэлементы, действие которых основано на фотоэффекте в полупроводниковых структурах с р-n переходами, где происходит непосредственное преобразование солнечного света в электрический ток.

Эквивалентная схема солнечной батареи, как источника электропитания может быть представлена в виде, показанном на рис. 3.12.


В работах Н.С. Лидоренко, Ж.И Алферова, В.М Андреева, В.А. Грилихеса, М.М Колтуна, В.Д Румянцева, М.Б Кагана и др., посвященных теории и экспериментальному исследованию свойств солнечных элементов (СЭ) показано, что вольтамперная характеристика (ВАХ) СЭ отличается от ВАХ полупроводникового диода появлением члена 1ф, обозначающего собой ток, генерируемый элементом под действием освещения, часть которого 1дь течет через диод, а другая — через нагрузку:



Коэффициент полезного действия солнечного элемента в основном зависит от температуры, которая может достигать больших значений при использовании фокусирующих систем или при работе в космическом пространстве. В наземных условиях и при применен™ бесконцентраторных фотоэлектрических панелей температура элемента изменяется в небольшом диапазоне, что не существенно влияет на его КПД. Однако, например в условиях жаркого климата (в Африке, Индии и др. приэкваториальных странах) температура может сильно отличаться от эталонных. В этом случае КПД солнечного элемента может быть определен по формуле:


Значения достигнутых в настоящее время к.п.д, солнечных элементов различных типов приведены на рис. 2.19.


Работа солнечных батарей в наземных условиях происходит при переменной плотности радиации, поступление которой определяется суточным ходом, метеоусловиями прозрачностью атмосферы. Отметим, что изменение мощности батареи происходит в основном за счет изменения тока солнечной батареи. Анализируя зависимости основных параметров СБ от уровня радиации рис. 3.14, можно установить, что с ростом интенсивности солнечных лучей, падающих на её поверхность, линейно растут ток /„ и мощность P0„nJt при этом напряжение Uonm изменяется в узком пределе изменения интенсивности. Однако этот закон сохраняется лишь при сравнительно высоких значениях Е, в противном случае, при низких Е (Е < 100 Вт/м2) напряжение Цопт резко падает до нулевого значения (как и остальные параметры СБ). В связи с этим при прямом подключении СБ к потребителю могут возникнуть перепады мощности, что является нежелательным, поэтому при расчетах вводится ограничение по минимальному уровню интенсивности, при котором еще возможно нормальное функционирование СБ и всей системы в целом.


Определение параметров теплового коллектора солнечной энергии. Выполнение теплового расчета коллектора и солнечной системы теплоснабжения в целом представляет определенные трудности из-за необходимости учета влияния случайных колебаний климатических параметров и сложного характера взаимодействия между элементами системы. Поэтому обычно используются инженерные методы, которые дают возможность получить приемлемые характеристики проектируемой системы.

Упрощенный метод расчета солнечной установки отопления и горячего водоснабжения здания заключается в определении, прежде всего, площади поверхности коллектора солнечной энергии SCK

Тепловая мощность (Вт) плоского коллектора солнечной энергии (КСЭ) определяется как:



ИСПОЛЬЗОВАНИЕ ВОЗОБНОВЛЯЕМОЙ ЭНЕРГИИ/Елистратов В. В., Санкт-Петербургский государственный политехнический университет, 2008

??????????

??????? ?.?., ??$B!`(B?????? ?.?., ??????? ?.?., ?????????????? ???????????

?????? ?.?., ???????????? ??????????? ?????????? ????????????

?.?. ???????, ????????????? ???????????

?.?. ???????, ???????? ?????? ?? ??????? ???????????

?. ???????, ????????$B!`(B????? ???????????? ???????????

???????? ?.?., ??????????? ?.?., ???????? ?.?., ???????????????? ?????????? ???????????

?.?. ???????, ?????????? ???????????

?.?. ?????????, ?. ????, X. ???????, ????? ???????????? ?????

?.?. ???????, ?????? ???????

?????? ?.?., ??????????: ??? ??? ???????? ? ??? ??? ??$B!`(B?????

?. ????????, ???????????? ????????????? ???????????? ??????

?.?. ???????, ?????????????$B!`(B????? ?????????

?.?. ???????, ????????? ??????????$B!`(B?????? ? ?????????????????? ?????????????

??????????$B!`(B????? ??????????. $B!_(B. I. ?????? ???????

??????????$B!`(B????? ??????????. $B!_(B. II. ??????????? ???????

???????????? ??????????$B!`(B????? ?????

?.?. ???????, ??????????$B!`(B????? ??????????

?. ?. ????, ????????????????

????????????$B!`(B????? ??????????????? ???????

????????????? ?????????????? ???????

????? ? ???????????, ????????? ??????

??????????? ????????? ? ??????????? ???????? ??????????